Effects of severe congestion on PAH emissions from a heavy vehicle diesel engine

Michal Vojtisek-Lom^{1,2}, Martin Pechout¹, Martin Mazač¹, Luboš Dittrich¹, Jan Topinka³ 1 Department of Vehicles and Engines, Faculty of Mechanical Engineering, Technical University of Liberec

2 Institute for Automobile, Combustion Engine and Railway Engineering, Czech Technical University in Prague 3 Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic

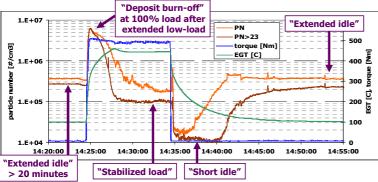
Contact: michal.vojtisek@fs.cvut.cz, tel. (+420) 774 262 854

Background

Internal combustion engines - dominant source of fine particles in urban air.
PM emissions depend heavily on engine technology, maintenance and operating conditions.

• Extended low-load operation, characteristic for severe congestion, is characterized by poor combustion and decreased catalytic converter efficiency due to low exhaust gas temperatures.

Goal

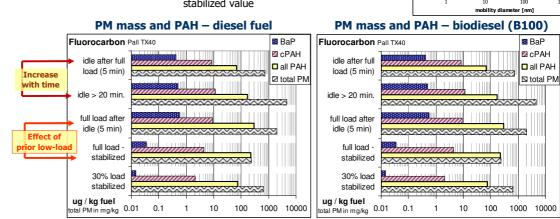

Characterization of diesel engine particulate matter emissions during and after extended low-load operation.

Experimental

Traditional diesel engine (Zetor 1505, inline mechanical injection pump)
Steady-state operating points:

- 30% load, 1500 rpm corresponds to "highway cruise" (EGT 265°C)
 - 100% load, 1500 rpm corresponds to hill / acceleration (EGT 460°C)
 - 2% load at elevated idle corresponds to "creep" (EGT 100°C)
- Sampling with tandem high-volume samplers (EcoTech 3000) on 8"x10" filters
 Teflon (Pall TX40HI20WW) gravimetric, PAH, toxicology
 - Quartz (Whatman QMA) gravimetric, PAH, EC/OC (not shown here)
- US EPA 16 priority and 7 carcinogenic PAH (organic extract) by HPLC, UV detection
 Online measurement of PM size distributions (Engine Exhaust Particle Sizer), sampling from full-flow dilution tunnel, no removal of volatile particles

Results – online measurements


Results – PM mass and PAH

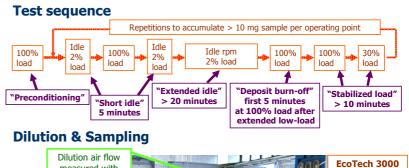
• The emissions of PM mass, US EPA 16 priority PAH, 7 carcinogenic PAH and benzo(a)pyrene were, for both diesel and biodiesel, an order of magnitude higher

a) during extended operation at 2% load, as compared to operation at 2% load immediately after higher load

b) at 100% load immediately after extended low-load operation, as compared to stabilized operation at 100% load

• These effects for biodiesel, relative to diesel fuel, were higher for PM mass, but lower for cPAH. Biodiesel had lower cPAH except for stabilized full load.

Conclusions

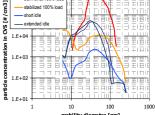

Total particle number, particulate matter mass, US EPA 16 priority PAH, carcinogenic PAH (cPAH), and benzo(a)pyrene were an order of magnitude higher

a) during extended operation at 2% load, as compared to operation at 2% load immediately after higher load

b) during operation at 100% load immediately after extended lowload operation, as compared to stabilized operation at 100% load. Extended operation at low-load, common in urban areas, can result in excess emissions not foreseen by currently used emission models. Results of toxicological assays on collected samples: See poster B242 – Pavlíková et al. Late breaking poster - presented within this session

Acknowledgments:

Sponsored by the EU LIFE+ programme, project LIFE10 ENV/CZ/651 – MEDETOX, Innovative Methods of Monitoring of Diesel Engine Exhaust Toxicity in Real Urban Traffic, and by the Czech Science Foundation Grant no. 13-01438S (BIOTOX).



000 measured with **Hi-vol samplers** thermal mass flow meter (not shown) Modified inlet for 40 mm pipe Independent PM_{2.5} head measurement **Diluted exhaust Dilution air** of flow and 67.8 m³/h 61 m³/h dilution ratio 8"x10" filter (dilution air) and the second 67.8 m³/h 8"x10" filter nominal flow (sample) for PM_{2.5} head 10-200 mg at lower flow, but the air is filtered amount PM per filter Partial-flow dilution tunnel 10:1 DR CO₂ measurement Raw exhaust in raw exhaust and transfer line at sampler outlet (dilution ratio check)

Results – online measurements

• Idle after a higher load: exhaust temperature drops, particle concentrations increase until they reach a stabilized value; nanoparticles increase first; particle size increases

• High load after idle: exhaust temperature increases and stabilizes, particle emissions initially higher and decreasing to stable values; peak = 1-2 orders of magnitude above stabilized value

- burn-off at 100% lo

Poster B187

Faculty of Mechanical

Engineering

Faculty of Mechanical Engineering